

V2V EDTECH LLP

Online Coaching at an Affordable Price.

OUR SERVICES:

- Diploma in All Branches, All Subjects
- Degree in All Branches, All Subjects
- BSCIT/CS
- Professional Courses
- +91 93260 50669
 v2vedtech.com
- V2V EdTech LLPv2vedtech

TEST

BEC MSBTE TEST 5

QUESTIONS

SECTIONS

1. Choose appropriate option - 191 Questions

Section 1 : Choose appropriate option - 191 Questions

- 1 An alternating (ac) quantity (voltage, current or power) is defined as the one which changes its _____as well as _____with respect to time.
- Value, direction
- Phase, polarity
- \bigcirc Value, phase

Correct: +1

2 All the home appliances such as TV, washing machine etc operate on _____.

- \bigcirc AC voltage
- \bigcirc DC voltage
- \bigcirc AC or DC voltage

Correct: +1

3 A _____ is a graph of magnitude of a quantity with respect to time.

 \bigcirc plot

○ picture

 \bigcirc shape

Correct: +1

4 Eventhough an ac waveform can take any shape, the _____ is the most prefered waveform of all.

 \bigcirc squarewave

 \bigcirc sinewave

○ triangular wave

Correct: +1

5 In the equation $v(t)=Vm \sin 2\pi ft$ the term v(t) denotes the ______voltage.

 \bigcirc peak

 \bigcirc RMS

 \bigcirc Instantaneous

Correct: +1

6 In the term v(t) the t in brackets indicates that_____.

 \bigcirc voltage V is a variable

7 A sinusoidal waveform can be_____or____.

○ Sinewave, triangular

 \bigcirc Sinewave, cosine wave

 \bigcirc Triangular, squarewave

Correct: +1

Correct: +1

8 The operation of an alternate is based on the principle of _____.

 \bigcirc Mutual inductance

 \bigcirc Dynamically induced emf

 \bigcirc Electromagnetic induction

Correct: +1

9 The AC voltage generators are called as _____.

 \bigcirc Alternators

 \bigcirc Induction generators

○ Alternating generator

10	The magnitude of induced voltage into the coil of an alternator depends on	of the rotating coil.
0	Material	
0	Position	
0	Thickness	
		Correct: +1
11	The shapes of induced emf in the rotating coil of an alternator is	
0	Cosine wave	
0	Sinewave	
0	Rectified sinewave	
		Correct: +1
12	The instantaneous value of voltage at t=t1 is represented as	
0	$\mathbf{v} (\mathbf{t} = \mathbf{t}_1)$	
0	$v(t = t_1)$	
0	v (t1)	
0	v/t_1	
		Correct: +1

○ Instantaneous value

○ Peak value

○ RMS value

Correct: +1

14 1 cycle =____.

 $\bigcirc \pi$ radians

○ 180°

 \bigcirc 2 π radians

Correct: +1

15 Each repetition consisting of one positive and one indetical negative part is called as ______ of the waveform.

 \bigcirc Time period

 \bigcirc One cycle

○ Frequency

Correct: +1

16 Time period T = Time corresponding to_____.

- \bigcirc One cycle
- \bigcirc Two cycles.

Correct: +1

17 ______ is defined as the time taken in seconds by the waveform of an ac quantity to complete one cycle.

 \bigcirc Time period

 \bigcirc Wavelength

○ Frequency

Correct: +1

18 The frequency fo ac mains voltage is_____.

 \bigcirc 50 Hz

 $\bigcirc~60~\text{Hz}$

 \bigcirc 50 sec.

 \bigcirc 25 sec.

Correct: +1

19 The frequency of an ac quantity is measured in _____ or Hz.

○ Unit/sec.

○ Cycles per sec.

 \bigcirc Sec per cycle

20 An alternating current is given by i= 14.14h sin 377t. Its frequency is _____.

○ 377 Hz

○ 188.5 Hz

 \bigcirc 50 Hz

○ 60 Hz

21 The maximum value of an ac quantity is called as its_____.

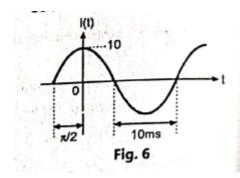
22 The time periof of the waveform shown in Fig. 5 is_____.

○ Amplitude

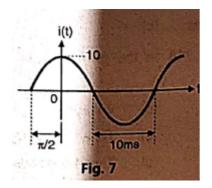
 \bigcirc Peak to peak value

○ RMS value

Correct: +1


Correct: +1

- 10 ms.
- \bigcirc 20 msec.
- 5msec.


Correct: +1

23 The frequency of the waveform shown in Fig.6 is _____.

- $\odot~$ 10 Hz.
- $\odot~$ 100 Hz.
- $\odot~50\,\text{Hz}$
- $\odot~$ 25 Hz.

24 The _____ of the waveform shown in Fig. 7 is 10 A.

\bigcirc Amplitude

○ Frequency

 \bigcirc RMS value

 \bigcirc Peak to peak value

25 The_____ is also called as amplitude.

- \bigcirc RMS value
- \bigcirc Peak value
- \bigcirc Average value

Correct: +1

Correct: +1

26 ______ is the rate of change of angle ∞ t with respect to time.

 \bigcirc One cycle

○ Radians per sec.

 \bigcirc None of these

29 Peak to peak values are most often used when measuring the magnitude on the _____.

 \bigcirc Cycles per sec.

 \bigcirc Radians

28 The units of angular velocity is _____.

 $\bigcirc \Omega = 2\pi/f$

 \bigcirc f = 2 π/Ω

 $\bigcirc \Omega = 2\pi f$

 \bigcirc f = 2 $\pi\Omega$

27 The relation between angular velocity and frequency is_____.

BEC MSBTE TEST 5 · Choose appropriate option · Questions

Correct: +1

Correct: +1

Correct: +1

○ Angular velocity

○ Frequency

○ Cathode Ray Oscilloscope (CRO)

\bigcirc Digital multimeter

30 ______ is the voltage measured from the baseline of an ac waveform to its maximum or peak level.

- Average voltage
- Peak voltage
- Peak to peak voltage
- 31 _____ value of a sinewave is 0.707 Vm.
- Average
- \bigcirc Peak to peak
- RMS

32 Rms value is also called as _____ of ac current.

- \bigcirc Light producing component
- \bigcirc Heat producing component

Correct: +1

Correct: +1

33 An alternating current is given by $i = 14.14 \sin 377t$. what is its rms value ?

 $\bigcirc \ 14.14\,A$

 \bigcirc 10 A

 $\bigcirc \ 377\,A$

 \bigcirc None of these

Correct: +1

34 Amount of light produced by a lamp or the amount of heat produced by an iron is proportional to the_____.

- \bigcirc Square of rms value
- \bigcirc RMS value
- \bigcirc Square of average value
- Average value

- 35 The ac voltmeter or ammeter indicates the _____ value.
- Average

Correct:	+1

36 Average value of a full cycle of a symmetrical ac waveform is _____.

 \bigcirc 2 Average

○ Zero

○ Arbitary.

Correct: +1

37 An alternating current is given by i=14.14 sin 377t. Its average value is_____.

O 14.14 A

 $\bigcirc \ 377\,A$

 $\bigcirc 10\,A$

 $\bigcirc 9A$

Correct: +1

38 The_____value of a waveform is also known as its mean value.

 \bigcirc RMS

O Peak

39 The average value of a sinusoidal waveform is _____.

○ 0.637 Ims

○ 0.707 Ims

 $\bigcirc \ 0.673 \ \mathrm{Im}$

Correct: +1

40 The average value of a symmetrical ac waveform is detemined from ______ of the waveform.

- Full cycle
- \bigcirc Half cycle
- \bigcirc Full or half cycle

Correct: +1

- 41 The average value of ______ waveform is obtained for one complete cycle.
- \bigcirc Asymmetrical
- \bigcirc Symmetrical
- \bigcirc Even symmetric
- \bigcirc Odd symmetric

42	The maximum value (peak value or	amplitude) of an alternating quantity is called as the _	value of
	the quantity.		

0	Rms	
0	Crest	
0	Average	
		Correct: +1
43	The value of peak factor for a sinusoidal waveform is	
0	1	
0	1.414	
0	0	
0	0.707	
		Correct: +1
44	The peak factor is also known as the factor.	
0	Form	
0	Trough	
0	Creast	

 \bigcirc None of these

45 The_____value is required in the applications such as dc motor control, battery chargers etc.

- \bigcirc Average
- \bigcirc Peak
- \bigcirc Rms
- \bigcirc Peak to peak

Correct: +1

46 The______of an aleternating quantity is defined as the ratio of its RMS value to its average value.

- Peak factor
- \bigcirc Form factor
- \bigcirc Crest factor

- 47 The value of form factor for a sinusoidal waveform is _____.
- 0.909
- 0 1.11
- 0.637

48 The form factor for a _____ waveform is 1.11

○ Any

○ Square

 \bigcirc Sinusoidal

○ Triangular

Correct: +1

49 A sinusoidal current has peak factor 1.4 and form factor 1.1. Its average value is 20A. Then its rms value is ______A and peak value is ______A.

○ 22, 30.8

○ 30.8, 22

○ 18.18, 25.7

Correct: +1

50 The correct formula for peak factor is $k_p =$ ____.

○ Vp/Vav

○ VRMS/Vav

 $\bigcirc \ V_m\!/\!V_{Rms}$

Correct: +1

Correct: +1

51 The correct expression for the form factor is $k_p =$ _____.

○ Im/Iav

○ Ims/Iav

 \bigcirc Im/IRms

○ I p-p/I Rms

52 Form factor is a _____ quantity.

○ Negative

 \bigcirc Dimensionless

 \bigcirc Fictitious

53 Form factor is always _____.

 $\bigcirc~$ Greater than 1

 \bigcirc Less than 1

54 The ac single phase supply voltage is _____ volts at a frequency of _____ Hz.

○ 110, 50

○ 110,60

○ 230,60

○ 230, 50

Correct: +1

55 The frequency of a three phase ac supply is _____.

 \bigcirc 50 Hz

 $\bigcirc~60~\text{Hz}$

 $\odot~150\,\text{Hz}$

 \bigcirc 180 Hz

Correct: +1

56 The 3 phase voltages are displaced by _____ redians from each other.

 $\bigcirc \pi/2$

 $\bigcirc \pi/3$

57 If phase voltages VR is represented by Vm sin	then the phase voltage VB is represented by
--	---

 \bigcirc Vm sin (Ω t + 240°)

 \bigcirc Vm sin (Ω t + 120°)

 \bigcirc Vm sin (Ω t - 120°)

Correct: +1

58 If VR is considered as reference VY _____VR by _____.

 \bigcirc Leads, 120°

○ Lags, 120°

 \bigcirc Lags, 240°

 \bigcirc Leads, 240°

Correct: +1

59 Normally the phase sequence in a three phase system is _____.

 \bigcirc R-B-Y

○ B-Y-R

60 The vector addition of three phase voltages at any instant is _____.

 $\bigcirc 3 \times 230 = 690 \text{ V}$

 $\bigcirc \sqrt{3} \times 230 = 398 \text{ V}$

 \bigcirc 400 V

○ 0 V.

61 The_____not present in delta system.

 \bigcirc Phase voltages are

 \bigcirc line voltages

○ Neutral point is

Correct: +1

Correct: +1

62 The _____ system is always a 3 point system.

 \bigcirc Star

O Delta

63 The phase shift between adjacent line voltages is _____.

○ 90°

○ 60°

○ 120°

○ 240°

Correct: +1

64 The number of phase voltages in any system is____.

 $\bigcirc 2$

03

0 6

0 4

Correct: +1

65 VRY is a _____ voltage for a star load.

 \bigcirc line

○ phase

66	Typically the rms phase voltage is V.	
0	400	
0	240	
0	440	
0	110	
		Correct: +1
67	Typically the rms line voltage is V.	
0	240	
0	415	
0	110	
0	220	
		Correct: +1
68	For a star connected load if the phases voltage is 120 V then the line voltage will beV.	

○ 120

0 69.3

Correct: +1

69 For a star connected load. IL = _____.

 $\bigcirc \sqrt{3}$ Iph

 \bigcirc Iph $1\sqrt{3}$

 \bigcirc Iph

 \bigcirc None of these

Correct: +1

70 If the rms phase voltage for a star load is 230 V then the peak phase voltage V m(ph)_____V.

○ 230

 \bigcirc 230 $\sqrt{3} = 398.4$

 \bigcirc 230 1 $\sqrt{3}$ = 132.8

 \bigcirc 230 $\sqrt{2} = 325.3$

Correct: +1

71 For a delta load if the line voltage is 415 V then the phase voltage will be____V.

0 415

72 If dc is applied to the primary then there is a possibility of _____ of transformer.

 \bigcirc damage

 \bigcirc core saturation

 \bigcirc short circuit

Correct: +1

73 For a transformer the frequency of secondary voltage is _____ that of the primary voltage.

 \bigcirc Higher than

 \bigcirc Lower than

 \bigcirc Equal to

74 A transformer operates on the principle of _____.

 \bigcirc Dynamic electromagnetic induction

 \bigcirc Static electromagnetic inducion

○ Fleming's laws of electromagnetic induction

Correct: +1

75 A transformer cannot operate on _____.

 \bigcirc AC voltage

○ DC voltage

 \bigcirc Cosine voltage

Correct: +1

76 The material used for the construction of the tansformer core is _____.

 \bigcirc Silicon steel

 \bigcirc Cast iron

 \bigcirc Reen forced iron

Correct: +1

77 The _____ in a transformer acts as an insulator as well as coolant.

78 The core of transformer is in the form of a rectangular frame made from laminations.

 \bigcirc Wire insulation

 \bigcirc Laminations

 \bigcirc Off

0	berry type
79	The core type transformer provides magnetic circuits.
0	one
0	two
0	more than two
80	The cylindrical windings are used for transformer.
0	core
0	shell
0	berry
81	In the type transformer the windings encircle the core.

 \bigcirc shell type

Correct: +1

Correct: +1

Correct: +1

 \bigcirc shell

 \bigcirc core

82 For the _____ type transformer, the core encircles the winding.

- \bigcirc core
- \bigcirc shell
- \bigcirc berry

Correct: +1

- 83 For the _____ type transformers the primary and secondary windings are placed on the central limb of the core.
- \bigcirc core
- \bigcirc shell
- \bigcirc berry

Correct: +1

- 84 The_____type of transformer provides double magnetic circuit.
- \bigcirc core
- \bigcirc shell
- \bigcirc berry

Correct: +1

85 For the _____ type transformer the sandwitched windings are used.

⊖ shell	
⊖ berry	
26 An alternating asymptotic given by $i = 14.14$ gives $277t$. Its time nericed is	Correct: +1
86 An alternating current is given by $i = 14.14 \sin 377t$. Its time period is	
○ 20 ms	
○ 16.67 ms	
○ 2.65 ms	
○ 5.3 ms	
	Correct: +1

87 ______is defined as the number of cycles completed by an alternating quantity in one second.

○ Frequency

 \bigcirc Amplitude

 \bigcirc Angular velocity

Correct: +1

88 _____value of a waveform is also called as its effective value.

○ Rms

		Correct: +1
89	The domestic ac supply is phasesupply.	
0	3 Φ , dc	
0	1 Φ , dc	
0	1 Φ , ac	
		Correct: +1
90	In practice the number of phases in a polyphase ac system is	
0	1	
0	2	
0	3	
0	4	
		Correct: +1
91	For a balaned delta load the overall power factor is that of each phase.	

 \bigcirc Three times

92 ______ is used to convert energy of one form to other form.

 \bigcirc Diode

 \bigcirc Semiconductor

O BJT

 \bigcirc Transducer

93 Two parts of transducers are_____.

 \bigcirc sensing element and transduction element

○ P type and N type semiconductor

 \bigcirc conductor and insulator

 \bigcirc electrical and mechanical

Correct: +1

94 Function of transducer is _____.

 $\, \odot \,$ amplify input signal

97 Identify dynamic characteristics of transducer_____.

○ detect parameter and to provide a proportional electrical output

 \bigcirc to emit light

95 Two types of characterized of transducers are _____.

○ forward and reverse biased characteristics

 \bigcirc voltage and current characteristics

○ static and dynamic characteristics

 \bigcirc internal and external characteristics

96 Identify dynamic characteristics of transducers are _____.

○ span

○ fidelity

○ error

○ range

Correct: +1

Page 32 of 89

Correct: +1

 \bigcirc error

○ range

Correct: +1

98 Linearity of transducer is a _____

 \bigcirc dynamic characteristics

 \bigcirc not required characteristics

 \bigcirc static characteristics

 \bigcirc VI characteristics

99 _____is a primary transducer.

 \bigcirc Photodiode

○ Thermocouple

 \bigcirc Quartz crustal

 \bigcirc Bourdon tube

Correct: +1

○ active transducer RTD

101 ______ is a example of avtive transducer.

O RTD

○ Thermocouple

 \bigcirc LVDT

○ Strain gauge

102 Electrical tranceducer converts_____.

○ electrical signal to non-electrical signal

 \bigcirc electrical energy to mechanical energy

 \bigcirc photo energy to sound energy

 \bigcirc non-electrical energy to electrical energy

Correct: +1

Correct: +1

○ primary tranceducer LVDT

○ accuracy dynamic characteristics

103 LVDE is a_____.

 \bigcirc resistive transducer

 \bigcirc capacitive transducer

 \bigcirc inductive transducer

 \bigcirc active transducer

Correct: +1

104 Form following list identify resistive transducer_____.

○ RVDT

O RTD

○ Thermocouple

 \bigcirc Bourdon tube

Correct: +1

105 In LVDT, output voltage_____.

 $E_o = E_{S_1} - E_{S_2}$

 $\bigcirc E_o = E_{S_1} + E_{S_2}$

$\bigcirc E_o = E_{S_1} \times E_{S_2}$

$\mathbf{E}_{o} = \mathbf{E}_{s_{1}} / \mathbf{E}_{s_{2}}$

106 In LVDT, secondly windings are connected in _____.

 \bigcirc parallel addition

 \bigcirc parallel opposition

 \bigcirc series addtion

 \bigcirc series opposition

107 Thermocouple is based on _____.

 $\bigcirc~$ Ohm's law

 \bigcirc kelvin theorem

 \bigcirc Seebeck effect

 \bigcirc piezoelectric effort

Correct: +1

Correct: +1

○ photo diode	
○ LVDT	
○ RTD	
○ LED	
	Correct: +1
109is an optical sensor.	
○ photo diode	
○ LVDT	
○ Thermocouple	
○ Zener diode	
	Correct: +1
110 Passive transducer requires externalenergy along with mechanical parameter as input.	
○ optical	
○ electrical	

 \bigcirc thermal

 \bigcirc static

- 111 Thermocouple is a _____ transducer.
- \bigcirc variable resistance
- \bigcirc variable capacitance
- voltage generating
- \bigcirc variable inductance

Correct: +1

- 112 _____is an example of magnetic transducer .
- LVDT
- O RTD
- \bigcirc Thermocouple
- Strain gauge

- 113 LVDT has_____.
- \bigcirc movable magnetic core
- \bigcirc movable primary
- \bigcirc two primary windings

\bigcirc	type of transducer	
------------	--------------------	--

 \bigcirc measuring lag

BEC MSBTE TEST 5 · Choose appropriate option · Questions

 \bigcirc single secondary windings

114 The major drawback of piezo electric transducer is that_____.

 \bigcirc it cannot sense dynamic pressure

 \bigcirc it can measure only force

 \bigcirc it is very compact

 \bigcirc it cannot sense static pressure

115 Resolution of transducre depends on_____.

 \bigcirc linearity

 \bigcirc operation range

116 Sensitivity of transducer can be determined using _____.

 \bigcirc input characteristics

Correct: +1

Correct: +1

\bigcirc transfer characteristics

 \bigcirc accuracy

Correct: +1

117 Fidelity of transducer is related to its_____.

 \bigcirc operating frequency

 \bigcirc frequency response

○ physical Size

 \bigcirc resolution

118 Photo transistor is a _____.

 \bigcirc photo emissive transducer

 \bigcirc photovoltaic transducer

 \bigcirc photoconductive transducer

 \bigcirc photosensitive transducer

119 Peizoelectric transducer uses _____ material.

Correct: +1

○ aluminium

○ quartz crystal

 \bigcirc iron

Correct: +1

120 Transducer are not suitable for_____.

 \bigcirc automation

 \bigcirc instrumentation

○ measurement

 \bigcirc recticication

Correct: +1

121 Resolution of transducer depends on _____.

○ range

 \bigcirc measuring lag

 \bigcirc operating temperature

○ loading effect

- Reliability
- Accuracy
- Linearity
- Measuring lag

Correct: +1

123 If sensitivity is same on required range of input signal for transducer, then it gives better_____.

- linearity
- accuracy
- \bigcirc resolution
- \bigcirc precision

Correct: +1

124 For transducer, precision is a measure of _____.

- \bigcirc error
- repeatability
- \bigcirc linearity
- \bigcirc response time

125 Accuracy depends on _____.

 \bigcirc error

○ repeatability

 \bigcirc linearity

 \bigcirc response time

Correct: +1

126 Drawback of inductive proximity sensor is_____.

 \bigcirc its output depends on colour of objects

 \bigcirc it is moisture sensitvie

 \bigcirc it can detect only metals

 \bigcirc it has mechanical moving parts

Correct: +1

127 Inductive proximity sensor is based on_____.

 \bigcirc electromagnetic principle

 \bigcirc ultrasonic principle

 \bigcirc optical principle

128 Proximity sensor is a_____. \bigcirc contact type switch \bigcirc contactless switch \bigcirc thermal switch \bigcirc pressure switch Correct: +1 129 From following list identify device which is not a optical transducer_____. \bigcirc photo diode ○ photo transistor ○ LDR O LED Correct: +1 130 A piezo-electric transducer is used to conver_____.

 $\bigcirc\,$ mechanical vibration to electrical energy

133 Capacitive transducer is a _____.

\bigcirc variable liquid level to electrical energy

 $\bigcirc\$ optical energy to electrical energy

131 Select the material not suitable for piezoelectric transducer.

○ RTD

○ LVDT

 \bigcirc photo diode

○ Piezo-electric crystal

132 Select the material not suitable for peioelectric transducer.

 \bigcirc Rochelle salt

○ Quartz

O BaTiO₂

 \bigcirc Silicon

Correct: +1

Correct: +1

 \bigcirc contactless transducer

 $\bigcirc\,$ thermal transducer

 \bigcirc optical transducer

Correct: +1

Correct: +1

134 In capacitive transducer, capacitance does not depend on_____.

 \bigcirc dielectric material

 \bigcirc distance between two plates

 \bigcirc area of dielectic material

 \bigcirc environmental temperature

135 Capacitive transducer is suitable for .

 \bigcirc objecct detection

 \bigcirc level measurement

 \bigcirc temperature measurement

○ light intensity measurement

- buffer
- \bigcirc oscillator
- \bigcirc rectifier
- \bigcirc SMPS

Correct: +1

137 In thermocouple, thermo e.m.f. depends on _____.

 \bigcirc hot and cold junction temperature

○ light intensity

 \bigcirc presence of nearby object

○ pressure

Correct: +1

138 Identify digital transducer_____.

- \bigcirc shaft encoder
- \bigcirc thermocouple
- \bigcirc LVDT
- O RTD

139 Digital transducer output is _____.

 \bigcirc sine signal

 \bigcirc variable amplitude signal

○ pulses

 \bigcirc mechanical vibrations

Correct: +1

140 RTD has a _____.

 \bigcirc positive temperature coefficient

○ negative temperature coefficient

 \bigcirc wide negative temperature range

 \bigcirc integrated circuit form

Correct: +1

141 In computer system on motherboard, to sense temperature, ______ is used.

 \bigcirc thermocouple

- \bigcirc RTD
- \bigcirc thermistor

\bigcirc IC based temperature sensor

142 BJT is a_____.

 \bigcirc voltage operating device

 \bigcirc power controlled device

 \bigcirc current controlled device

 \bigcirc passive device

Correct: +1

Correct: +1

143 A BJT is in saturation region if _____.

 \bigcirc base emitter junction is forward based and base collector junctin is reversed bassed

 \bigcirc base emitter junction is reverse baised and base collector junctin is forward baissed

 \bigcirc both junctions are forward baised

 \bigcirc both junctions are reversed baised

Correct: +1

144 For BJT, doping concentration is high in _____.

 \bigcirc base region

147 α is a notation for current gain in _____.

\bigcirc collector region

\bigcirc all three regions

145 If BJT is operating with both of its junction forward biased then it is operating in ______.

- \bigcirc saturation state
- \bigcirc active state
- cut-off state

 \bigcirc non-operating state

146 β is a notation for current gain in _____.

- \bigcirc common base confuguration
- \bigcirc common emitter configuration
- \bigcirc common collector configuration
- \bigcirc diode circuits

Correct: +1

Page 50 of 89

Correct: +1

○ common emitter configuration	
○ common collector configuration	
○ diode circuits	
	Correct: +1
148 Magnitude of α is	
○ <1	
\bigcirc 0	
○ more than 1	
\bigcirc less than 0	
	Correct: +1
149 Magnitude of β is	
○ <1	
\bigcirc 0	
○ more than 1	
\bigcirc less than 0	

○ C>B>E

○ E>B>C

○ B>E>C

○ C>E>B

Correct: +1

151 To operate BJT in active state, base collector junction is _____ and base collector junction is _____.

 \bigcirc forward biased, reverse biased

 \bigcirc forward biased, forward biased

 \bigcirc reverse biased, reverse biased

 \bigcirc reverse biased, forward biased

Correct: +1

152 Idnetify BJT configuration giving highest current gain as_____.

 \bigcirc common base

 \bigcirc common emitter

 \bigcirc common collector

 \bigcirc reverse configuration

153 For BJT, select correct option_____.

 \cap I_E > I_C

 \bigcirc I_E < I_C

 \bigcirc I_E = I_C

 \odot no relation between I_{E} and I_{C}

154 Three types of operating modes of BJT are_____.

 \bigcirc forward bias mode, cut-off mode, reverse bias mode

 $\, \odot \,$ conducting mode, partially conducting mode and stop mode

 \bigcirc transfer mode, static mode and dynamic mofe

 \bigcirc active mode, saturation mode and cut-off mode

Correct: +1

Correct: +1

155 For BJT in any configuration, input is not applied to ______ and output is not obtained from

- \bigcirc base, gate
- \bigcirc collector, base

\bigcirc emitter, base

 \bigcirc gate, emitter

156	In CE configuration, input is applied toand output is obtained from	
01	pase,collector	
0	collector, base	
0	emitter, base	
0	collector, emitter	
		Correct: +1
157	In CB configuration, input is applied toand ouput is obtained from	
	In CB configuration, input is applied toand ouput is obtained from	
01		
01	base, collector	
	base, collector collector, base	

 \bigcirc collector, base

 \bigcirc emitter, collector

 \bigcirc base, emitter

Correct: +1

Correct: +1

159 Voltage gain of common collector (CC) configuration is _____.

 \bigcirc very high

⊖ zero

 \bigcirc nearly one

 \bigcirc more than 100

160	configuration of BJT can be used as buffer circuit.
○ CC	
○ CB	
○ CE	
○ CG	

- \bigcirc base
- \bigcirc collector
- gate
- emitter

Correct: +1

162 From following list of terminal, identify which is FET terminal?

 \bigcirc drain

- \bigcirc source
- \bigcirc base
- gate

Correct: +1

163 In BJT amplifier circuit, the function of Cin capacitor is _____.

- \bigcirc increasing gain
- $\, \odot \,$ increasing bandwidth
- \bigcirc blocking DC sginal components
- \bigcirc increasing stability

164 In BJT amplifier circuit function of CE capacitor connected in parallel with RE emitter resistor is ______.

 \bigcirc increasing gain

 \bigcirc increasing bandwidth

○ blocking DC signal components

○ increasing stability

Correct: +1

165 To operate BJT as a switch, it is operated in_____.

 \bigcirc active and cut-off mode

 \bigcirc active and saturation mode

 \bigcirc forward and reverse bias mode

 \bigcirc cut-off and saturation mode

Correct: +1

166 In saturaion state of BJT, BE junction is _____ and BC junction is _____.

 \bigcirc reverse bised, forward biased

 \bigcirc reverse biased, reverse biased

 \bigcirc forward biased, reverse biased

 \bigcirc reverse biased, forward biased

 \bigcirc reverse biased, reverse biased

 \bigcirc forward biased, reverse biased

 \bigcirc forward biased, forward biased

 \bigcirc open switch

BEC MSBTE TEST 5 · Choose appropriate option · Questions

○ forward biased, forward biased

167 In cut-off state of BJT, BE junction is _____and BC junction is _____.

168 In active off state of BJT, BE junction is _____ and BC junction is _____.

169 For BJT, if both junctions are revrese biased then it acts as _____.

 \bigcirc reverse biased, forward biased

 \bigcirc reverse biased, reverse biased

 \bigcirc forward biased, reverse biased

 \bigcirc forward biased, forward biased

Correct: +1

Correct: +1

\bigcirc amplifier

○ oscillator

	Со	orrect: +1
170 For BJT, if both junctions are forward b	biased then it acts as	
\bigcirc open switch		
\bigcirc close switch		
\bigcirc amplifier		
\bigcirc oscillator		
	Co	orrect: +1
171 FET is a		
\bigcirc non-semiconductor device		
○ bipolar device		
○ light emitting device		
○ unipolar device		
	Со	orrect: +1
172 For FET, the amplification factor is a _	of transductance (gm) and dynamic drain resistance(re	ł).

- \bigcirc product
- \bigcirc division
- \bigcirc subtraction

Correct: +1

173 In FET amplification factor (μ) is a ratio of _____.

 \bigcirc change in Vds to change in Vgs

 \bigcirc output current to input current

○ output Voltage to input current

 \bigcirc change in Id to change in Vgs

Correct: +1

174 For FET, pinch-off voltage is_____

 \bigcirc positive

 \bigcirc zero

 \bigcirc negative

 \bigcirc any type

- Zero
- maximum
- \bigcirc negative
- \bigcirc double

Correct: +1

- 176 Input resistance of FET is _____.
- \bigcirc zero
- ⊖ megaohm
- \bigcirc fraction of ohm
- \bigcirc few kilovolts

- 177 The value of transconductance is expressed in_____
- \bigcirc ohm
- \bigcirc lumen
- \bigcirc lux
- $\bigcirc\,$ siemens S or mhos μ

178 For drain characteristics curve of FET, three regions are_____.

○ ohmic region, pinch-off region, breakdown region

- \bigcirc forward region, saturation region, reverse region
- pinch-off region, cut-off region, amplification region
- \bigcirc ohmic region, switching region, cut-off region

Correct: +1

179 As reverse biased voltage across gate and source increases, drain curretn_____.

 \bigcirc increases

 \bigcirc decreases

 \bigcirc becomes zero

 \bigcirc does not get affected

Correct: +1

180 CMOS devices are constructed using_____

 \bigcirc two C channel devices

 \bigcirc P channel and N channel devices

○ two N channel devices

\bigcirc two P channel devices

	Correct: +1
181 Two operating modes of depletion type MOSFET are	
\bigcirc saturation mode and ohmic mode	
\bigcirc depletion mode and enhancment mode	
\bigcirc depletion mode and saturation mode	
\bigcirc forward mode and reverse mode	
	Correct: +1
182can be used as a voltage dependent resistor.	Correct: +1
 182can be used as a voltage dependent resistor. O Zener diode 	Correct: +1
	Correct: +1
O Zener diode	Correct: +1

Correct: +1

183 FET is commonly used than BJT to fabricate IC because of _____.

 $\, \bigcirc \,$ less power consumption and compact size

\bigcirc easily available and more noisy

 \bigcirc available in two types.

184 For FET, when reverse biased voltage across gate and source increases, depletion layer_____.

- \bigcirc increases
- \bigcirc decreases
- \bigcirc becomes zero
- $\bigcirc~$ not affected

Correct: +1

Correct: +1

185 Identify BJT operating state for the conditions Ic=0 and Vo=Vcc

- BJT amplifier
- BJT ON state switch
- BJT OFF state switch
- $\odot\,$ BJT saturation state

Correct: +1

186 RC coupled amplifiers are commonly used for _____ amplification.

- \bigcirc audio signal
- RF single frequency signal
- \bigcirc zero to very high frequency signal

Correct: +1

- 187 Calculate and select the correct option for bandwidth if lower cut-off frequency is 100 Hz and higher cutoff frequency is 20 kHz.
- \bigcirc 20.1 kHz
- \bigcirc 21 kHz
- \bigcirc 19900 Hz
- $\bigcirc 20 \, kHz$

Correct: +1

188 If highest voltage gian of amplifier is 60, calculate and select the correct option for gain to find bandwidth from frequency response.

0 60

- O 120
- 0 42.42

 \bigcirc 57

189 If gain of first stage is 20 and gain of second stage is 5, calculate and select teh correct option for overall fain of two-stage amplifier.

○ 25			
0 15			
○ 20			
○ 100			

Correct: +1

190 If current gain in common base configuration α is 0.99 then calculate current gain in common emitter configuration.

0	99			
0	9			
0	0.99			
0	0.1			

- 191 Calculate collector current if emitter current is 100 mA and base current is 2 mA.
- \bigcirc 102 mA
- $\bigcirc 200 \text{ mA}$

○ 50 mA

TEST

BEC MSBTE TEST 5

ANSWERS

SECTIONS

1. Choose appropriate option - 191 Questions

Section 1: Choose appropriate option - 191 Questions

- 1 Value, direction
- 2 AC voltage
- 3 waveform
- 4 sinewave
- 5 Instantaneous
- 6 Time t is a variable
- 7 Sinewave, cosine wave
- 8 Electromagnetic induction
- 9 Alternators
- 10 Position
- 11 Sinewave

12 v(t1)

13 Instantaneous value

14 2π radians

15 Time period

16 One cycle

17 Time period

18 50 Hz

19 Cycles per sec.

20 60 Hz

21 Amplitude

22 20 msec.

23 10 Hz.

24 Amplitude

25 Peak value

26 Angular velocity

27 Ω = 2πf

28 Radians per sec.

29 Cathode Ray Oscilloscope (CRO)

30 Peak voltage

31 RMS

32 Heat producing component

33 10 A

34 Square of rms value

35 Average

36 2 Average

37 9 A

38 Average

39 0.673 lm

40 Half cycle

41 Asymmetrical

BEC MSBTE TEST 5 \cdot Choose appropriate option \cdot Answers

42 Crest

43 1.414

44 Creast

45 Average

46 Form factor

47 1.11

48 Sinusoidal

49 22, 30.8

50 Vm/VRms

51 Im/IRms

52 Dimensionless

53 Greater than 1

54 230, 50

55 50 Hz

56 2π/3

57 Vm sin (Ωt + 120°)

58 Lags, 120° 59 R-Y-B **60** 0 V. 61 Neutral point is 62 Delta **63** 60° **64** 3 65 line **66** 240 **67** 415 **68** 207.8 69 Iph **70** 230√2 = 325.3

72 damage

73 Equal to

74 Static electromagnetic inducion

75 DC voltage

76 Silicon steel

77 Off

78 core type

79 one

80 core

81 core

82 shell

83 shell

84 shell

85 shell

86 16.67 ms

87 Frequency

88 Rms

89 1**Φ**, ac

90 3

91 Same as

92 Transducer

93 sensing element and transduction element

94 to emit light

95 static and dynamic characteristics

96 fidelity

97 measuring lag

98 static characteristics

99 Bourdon tube

100 secondary transducer thermocouple

101 Thermocouple

103 inductive transducer

104 RTD

 $E_0 = E_{S_1} - E_{S_2}$

106 series opposition

107 Seebeck effect

108 RTD

109 photo diode

110 electrical

111 voltage generating

112 LVDT

113 movable magnetic core

114 it cannot sense static pressure

115 operation range

116 transfer characteristics

117 frequency response

118 photosensitive transducer

119 quartz crystal

120 recticication

121 range

122 Linearity

123 linearity

124 repeatability

125 error

126 it can detect only metals

127 elctromagnetic principle

128 contactless switch

129 LED

130 mechanical vibration to electrical energy

131 Piezo-electric crystal

133 contact type transducer

134 environmental temperature

135 level measurement

136 buffer

137 hot and cold junction temperature

138 shaft encoder

139 pulses

140 positive temperature coefficient

141 IC based temperature sensor

142 current controlled device

143 both junctions are forward baised

144 emitter region

145 saturation state

146 common emitter configuration

148 <1

149 more than 1

150 E>B>C

151 forward biased, reverse biased

152 common collector

153 $I_{E} > I_{C}$

154 active mode, saturation mode and cut-off mode

155 collector, base

156 base,collector

157 emitte, collector

158 base, emitter

159 nearly one

160 CC

161 gate

163 blocking DC sginal components

164 increasing gain

165 cut-off and saturation mode

166 forward biased, forward biased

167 reverse biased, reverse biased

168 forward biased, reverse biased

169 open switch

170 close switch

171 unipolar device

172 product

173 change in Vds to change in Vgs

174 negative

175 Zero

176 megaohm

177 siemens S or mhos μ

178 ohmic region, pinch-off region, breakdown region

179 decreases

180 P channel and N channel devices

181 depletion mode and enhancment mode

182 FET

183 less power consumption and compact size

184 increases

185 BJT OFF state switch

186 audio signal

187 19900 Hz

188 42.42

189 100

190 99

191 98 mA